D212 排熱駆動デシカント空調システム

AIR-CONDITIONING SYSTEM USING DESICCANT DRIVEN BY WASTE HEAT

○関野 浩志（電気工学），金 健力（電気工学），鶴田 清史（電気工学），広瀬 智*（熊本大工）
○Hirosi OKANO, Wei-Li JIN, Hiroshi FUNATO and Tsutomu HIROSE*
Seibu Giken Co., Ltd.3108-3, Ayagi, Koga-city, Fukuoka 811-3134, Japan
*
Department of Applied Chemistry, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555, Japan

ABSTRACT

We author have commenced the proof test of cogeneration system combing a micro gas turbine generator with a new desiccant air-conditioning system. We could improve its performance in compare with conventional system and we simplified it. We designed the system to direct burning gas to a desiccant rotor for reactivation directly. On the other hand, we build desiccant air-conditioning system that utilize waste heat of boiler by using a heat exchanger that exchanges heat from the boiler with the outer-air that is directed to a desiccant rotor. We confirmed its potential by proof test.

Key Words: Desiccant, Adsorption, Dehumidifier, Sensible heat Exchanger, Cogeneration

1. まえがき

近年、地球温暖化防止対策、省エネルギーなどの背景から各種自家発電装置と組み合わせたコージェネーシスタ（以下CGSと表示）の需要が増加している。CGSとは、一種の燃料からの電気や熱などを二種類以上のエネルギーを同時かつ連続的に得ることによりエネルギーの有効利用を図るシステムであるが、高価を通して高い発電効率を維持するためには排熱を給湯需要以外に有効活用する方法の開発が課題となっている。

デシカント空調システムは排熱や排熱を熱源として、ハニカム除湿機と断熱交換器及び水を媒介とする気化冷却器を組み合わせて冷房するノンフロン、非電力型空調システムであるが、給湯需要の少ない夏季においても排熱を効率的に利用できるシステムとして今後のCGS普及のカギになると考えられている。

著者らはマイクロガスタービン発電機（以下、MGTと表示）からの排熱を利用するデシカント空調システムとして、新しい発想で従来式より性能を向上し、シンプルな構成としたNEWデシカント空調システムを開発し実証試験を行っている。燃焼ガスを直接デシカントローターの再生空気として投入する再生再生系に続き、今回さらにボイラ等の排熱を、熱交換器を介して間接的に投入する再生再生式NEWデシカント空調システムを製作し実証試験を行ったので、その概要及び試験結果について報告する。

2. 従来タイプデシカント空調システム

従来のデシカント空調システムは一般にFig.1に示すようなツインローター式で、除湿ローター、回転式熱交換器、再生空気加熱用の湿ってヒーター、直接気化冷却器、および排熱回収のための排熱ボイラなどの機器から構成される[1-3]。冷房運転の原理はFig.1より、まずハニカム除湿機で取り入れた外気中の水分を除湿ローターの吸着剤（デシカント）により除去した後（1→2）、その際生じた吸着熱を熱交換器で除
去（2→3），さらに気化冷却器で水の蒸発潜熱を利用
して空気を冷却する（3→4）。熟源はハリカム除湿機
で吸着除湿した水分をシステム外に排出するいわゆる
再生工法（7→8→9）のために必要となる。
MG Tの排熱を利用したCGSとして、従来のディ
シカント乾燥システムをそのまま適用しようとした場
合以下の問題がある。まず排熱の効率的な利用と
いう点から考えて、従来式のディシカント乾燥システム
ではFig.1のように約280℃の高温度ガスを排熱ポイラ
に投入して湿気を作り、さらにその湿気を熱交換器
（湿気ヒーター）を介して除湿機の再生空気を加湿す
る方式で2台の熱交換器が必要で、熱損失の増加や
、インシュラコストがアップするという問題がある。
実際にMG Tと排熱ポイラを組み合わせたCGS実機
においては排熱ポイラから100℃前後の排ガスが排気
されており、排熱ポイラ前後の温度差および外気温度
より推算して排ガスエネルギーの約20％がムダになっ
ていることが分かれる。また熱媒体として常圧の水を採
うため、280℃という高温の排ガスがあるにもかかわら
ず除湿ローターに投入できる実際の再生温度は80℃以
下にながらざるを得ないいう制約もある。このような
背景からマイクロガスタービンの排熱を効率よく利用
するディシカント乾燥システムを検討した。

NEWディシカント乾燥システムを開発した。この新
しいシステムは、排熱ポイラ、湿気ヒーター及び気化冷
却器がなく、システムとしてはかなり簡素化された構
成になっている。
冷房運転の原理はFig.2より、ハリカム除湿機で取
り入れた外気の水分を吸着により除去した後（1→
2）、その際生じた吸着熱を特殊回流式熱交換器で熱
交換冷却するが、その際除湿機に水をスプレーしての
蒸発乱熱を利用（4→5）凝縮水を強力に冷却して
室内に供給する（2→3）。ハリカム除湿機はガスタービ
ンの排ガスとエントロヒーター冷卻水をミックス
した140℃前後の空気で再生する（6→7）。詳細につ
いては既発表論文[4]を参照いただきたい。

4. 排ガス間接再生型NEWディシカント乾燥システム
前節で述べた直接再生型NEWディシカント乾燥シ
ステムはMG T排ガスを直接投入して冷房を行うシ
ステムであるが、本温ではさらに給湯用ボイラを使用
するCWSを対象として、排熱ポイラからの排ガスを利
用して駆動することを想定したFig.3に示すような
間接再生型NEWディシカント乾燥システムを試作し実
証試験を行った。前節でも述べたように排熱ポイラか
らは100℃前後の排熱が排気されているが、従来であ
れば利用価値のほとんどないこの排ガスを利用してデ
シカント乾燥機内蔵した再生空気用逆スパイラル熱交
換器を介して再生用空気を加熱して除湿ローターの再生
空気として使用する。

冷房運転の原理はFig.3より、ハリカム除湿機で
取り入れた外気の水分を吸着により除去した後（1→
2）、その際生じた吸着熱を特殊回流式熱交換器の
空気対空気熱交換器と間接換熱冷却の2段で、雰気と
の熱交換（2→3）及び水の蒸発乱熱を利用して吸熱
を強力に冷却して室内に供給する（3→4）。熱源は熱

Fig.2 A desiccant air-conditioning system
Regenerated by exhaust gas indirectness

Fig.3 A new desiccant air-conditioning system
Regenerated by exhaust gas indirectness

3. マイクロガスタービン排ガス直接再生型デシカ
ント乾燥システム

著者らは、LNGあるいはLPGを燃料とするMG
Tとの組み合わせを対象としたディシカント乾燥システム
として、燃焼ガスを直接除湿ローターの再生空気と
して使用するほか、燃料交換機も従来の回流式にかえて
特殊回流式熱交換器を採用し、高性能化とシング
ル化を同時に実現したFig.2に示すような直接再生型

-818-
交流器と間接熱交換器に流れ分けて流入させる。熱
交換器側では一部外気を混ぜて熱交換器で熱回収を
行い（5→7）、さらに再生空気需給用熱交換器で加
熱してハニカム除湿機の再生空気として使用する（7→
9）。間接熱交換器側では運気と共にスプレー水飛
沫を同軸して流入させ、給気を様々な冷却する冷熱源と
する（5→07）（Fig.4）。
間接再生型NEWデシカント空調システムは排ガスを熱交換して再生空気を加熱する方式なので燃料空気中
のガスや燃焼により生じた水蒸気により、ハニカ
ム除湿ロータの性能や、耐用性に対して影響を受け
ることが無く、比較的ダーティーな排ガスにも適用可
能である。また再生空気加熱用熱交換器を温水ヒータ
ーに交換すれば温水で再生することも可能である。

Fig.4 History of Air State in Desiccant Air-conditioning
System

5. 間接再生型NEWデシカント空調システムの実証
試験
間接再生型NEWデシカント空調システムの実証
試験装置の画像をFig.5に、システムの外観をFig.
6、空調対象室内吹出し口の設置状況をFig.7の
写真に示す。空調対象室は建築技術研究開発部の試験室
で、実験等で有機溶剤を使用するため一般の試験所よ
り多量の換気を必要とする場所である。また空調はデシ
カント空調システムとエアコンの組み合わせで運転
を行っている。

以下夏季の冷房運転状況及び検討結果例について
説明する。なおNEWデシカント空調システムはオー
ルプレスシュ式なので、冷房能力CC（kW）は Eq.（1）
式によって算出した。

\[CC = q_{lu} \times (I_{lu}-I_{lu}) \] （1）
実証試験データの一例をFig.8に示す。この日は晴れ、午前中の外気温度は35〜36℃に達し、湿度も18g/kgと高く非常に暑い典型的な夏日であった。この日は外気負荷が高いためかかわらず、また室内面積720㎡に対し換気風量4500㎥/hという多量の換気を実現しながら室温への熱負荷は26℃前後、給気温度は11.6℃前後の温熱に保たれていた。この時の外気負荷に対する冷房能力は39.3W前後でCOPは0.84前後であり、この実証試験により温熱ボイラ等からの100℃前後の低熱義務であるが、デシカント空調システムを高圧に換算させることが可能であることが分かった。

6. おわりに
現在実用化されているCS系は、発電機の排ガスを排ガスボイラに投入して温水に、給湯や蒸気（発電）式冷凍機等の駆動熱源にしているが、排ガスボイラから排気される義務利用価値の無い義務として排気されている。本研究ではさらにこの低温度順を利用してデシカント空調システムを駆動することを検討し、実証試験によってその可能性を確認した。

[謝辞] 本研究は経済産業省新規産業創造補助金対象事業により実施されました。ここに記して深く感謝の意を表します。

NOMENCLATURE
CC : Cooling capacity , W
G_A : Mass flow rate of supply air , kg/s
I : Air enthalpy , J/kg
T : Temperature , °C
X: Absolute humidity, g/kg

REFERENCES